Characterizing High-Quality Test Methods:
A First Empirical Study

Victor Veloso, Andre Hora
Department of Computer Science
Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte, Brazil
{victorveloso,andrehora}@dcc.ufmg.br

ABSTRACT

To assess the quality of a test suite, one can rely on mutation test-
ing, which computes whether the overall test cases are adequately
exercising the covered lines. However, this high level of granularity
may overshadow the quality of individual test methods. In this
paper, we propose an empirical study to assess the quality of test
methods by relying on mutation testing at the method level. We
find no major differences between high-quality and low-quality test
methods in terms of size, number of asserts, and modifications. In
contrast, high-quality test methods are less affected by critical test
smells. Finally, we discuss practical implications for researchers
and practitioners.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

KEYWORDS
Mutation testing, Code quality, Software repository mining

ACM Reference Format:

Victor Veloso, Andre Hora. 2022. Characterizing High-Quality Test Methods:
A First Empirical Study. In 19th International Conference on Mining Software
Repositories (MSR °22), May 23-24, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3529092

1 INTRODUCTION

Software testing is a key practice in software development. As a
proxy of test quality, one can rely on code coverage or mutation
analysis. Coverage measures the percentage of code that is covered
by tests and is typically used to assess the test effectiveness [8, 12,
13]. However, it presents some limitations [5, 21, 34]. For example,
one can have great coverage with no assert [34]. Another solution
to assess test quality (and overcome such limitations) is mutation
testing [5, 7, 14, 26, 34]. This technique injects mutations (artificial
faults) into the code and checks if tests can detect (or “kill”, in the
mutation testing terminology) these mutations. The rationale is
that if it fails to detect such mutations, it will miss real bugs [34].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9303-4/22/05...$15.00
https://doi.org/10.1145/3524842.3529092

Code coverage and mutation score typically target the overall
test suite effectiveness [6, 8, 9, 26]. However, this high level of
granularity may overshadow test quality [12]. Mutation Testing at
the method-level has proven useful for test suite reduction [27] and
assessing test quality with it would be important to: (1) understand
the characteristics of good (and bad) test methods, (2) provide novel
empirical data at method level to differentiate both good and bad
test methods, and (3) help to improve the quality of existing tests.

In this paper, we propose an empirical study to assess the quality
of test methods by relying on mutation testing. We extend a state-of-
the-art mutation testing tool [26] to analyze test methods and report
mutation results at the method level. Then, we assess 18,321 test
methods provided by five popular open-source projects: RxJava,
OKkHottp, Retrofit, ZXing, and Apache Commons Lang. We then
propose research questions to assess high-quality test methods:

RQ1: What are the code and evolutionary characteristics of high-
quality test methods?
RQ2: What test smells are prevalent in high-quality test methods?

Overall, we find no major differences between high and low-

quality test methods in terms of size, number of asserts, and modi-
fications. In contrast, high-quality test methods are less affected by
critical test smells.
Contributions: The contributions of this paper are twofold: (1) we
provide an empirical study to characterize high-quality test methods
and (2) we discuss implications for practitioners and researchers
working on software testing.

Dataset: zenodo.org/record/4987677#.YMz8G5pKiA0

2 MUTATION TESTING IN A NUTSHELL

Test mutation technique assesses test effectiveness in four major
steps (illustrated in Figure 1-left). First, the project test suite is
executed and the results are stored as the expected output. Then, a
mutation testing engine (e.g., PIT [26]) parses the code and applies
mutation operators on code structures generating a set of mutants.
The mutants are separately tested by the test suite and the results
form the obtained output. Lastly, each obtained output is compared
to the expected output. A mutant is “killed” when at least one of
the test results differs between both sets, i.e., when at least one of
the test methods run on the mutants failed, meaning they properly
detected the code mutations. Finally, a mutation score is computed:
higher scores mean the test suite is better in catching real bugs [34].

2.1 Mutation Score Computation

The mutation score is defined as the ratio of killed mutants and
the number of generated mutants (which includes the killed, sur-
vived, and uncovered sets). A mutant is killed in three scenarios:

https://doi.org/10.1145/3524842.3529092
https://doi.org/10.1145/3524842.3529092
zenodo.org/record/4987677#.YMz8G5pKiA0

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

failure, error, or time-out. A failure happens when the test fails, ie.,
an assertion detected the modification. An error occurs when an
exception is raised. Lastly, a time-out happens when the test execu-
tion takes considerably longer, possibly leading to an infinite loop.
Survived happens when the test passes, i.e., no assertion detected
the modification. Uncovered mutations cannot be killed, because
no test run reached them, hence PIT skips their execution.

Figure 2 exemplifies the execution of mutation testing based on
three mutation operators. The target system has a production class
(SUT) with two methods, sum() and triangle(). It also has nine test
methods: three cover sum() and six cover triangle(). For simplicity,
we do not show the code of the test methods, but their asserts
(column “Assertion”). The four generated mutants are annotated
in the SUT source code and detailed in the boxes. For example,
Mutation 1 replaces the “+” (sum) operator with “-” (subtraction).
Also, for each test method, Figure 2 shows its related mutants, the
obtained result, and the status of the mutant. At last, the mutation
score for the target system is 100% because testSum1() kills mutants
1 and 2, while testTriangle1() kills mutants 3 and 4.

« 3

2.2 Limitation of Test Suite Mutation Testing

Although test suite mutation testing is ideal for gathering the overall
test quality in a system, it has three limitations: (1) the overall
system mutation score overshadows the quality of individual test
methods; (2) the quality of a contribution (e.g., a pull request with
code and tests) can be unnoticed in a large system because its score
may be unaffected by small code changes (due to existing tests
outnumber the contributed tests); (3) existing test methods may
kill mutants within a contribution and hinder assessing the quality
of the contributed tests. For instance, in the previous example,
testTriangle5() and testTriangle6() kill no mutant, suggesting they
are the most fragile contributed test methods. However, the system
score is unaffected because their mutants are killed by other tests.
Thus, the 100% mutation score neglects quality difference between
the test methods, from the mutation analysis perspective.

3 MUTATION TESTING AT METHOD LEVEL
3.1 Test Method Mutation

To address the discussed limitations, we propose a five steps ap-
proach, as detailed in Figure 1-right. The first three steps are similar
to the traditional mutation testing: (1) run the test suite and collects
the expected output; (2) parse the project and apply mutation opera-
tors; (3) the resulting mutants are separately tested by the test suite;
(4) the result of each executed test method on each covered mutant
is collected as the obtained output; and (5) the obtained output
is compared to the expected result and the scores are computed
for each test method. This approach is implemented by extending
the mutation testing tool PIT tool [26] and is publicly available at:
https://github.com/victorgveloso/Detailed-CSV-Report-PITest.

The score for a test method test is the ratio of mutants killed by
the test and the total number of mutants the test covers. Given a
test method, its survived mutants set is formed by the successful
runs and its killed mutants by failures and errors. Notice that we do
not include the time-out set to avoid noise in the collected output,
which degrades the ability to define test methods quality.

Veloso and Hora

3.2 Example: Computing Test Method Scores

In Figure 2, we note that 5 out of the 9 test methods have a mutation
score of 100% (column “TM Score”), two have a score of 50%, and two
have a score of 0%. Both testTriangle5() and testTriangle6() scores
are 0%, suggesting they have less quality. Indeed, their assertions
(i.e., assertNotEquals) are the weakest in the test suite.

Test Suite Mutation Testing

Srem PIT H smt = Start oenerme \/luanulan
JGenenle M M M .Systcm ngind
Vi

. Test Method Mutatlon Testing (Our approach)
!

9

AeStS tests| \ .

Run
R
P Expecf Obtained, =t ']
s *.““m;"';s% SR | ey
Tc~t Suite Test Suite Obtained output o

Expected output 9

Figure 1: Traditional approach (left) vs. ours (right).

'
'
'
'
'
' mulams
'
'
'
'
'
'

4 STUDY DESIGN
4.1 Selecting the Software Systems

We collect the top 15 Java repositories from GitHub (in terms of
the star metric [3, 28]) and the Apache Commons Lang. Next, for
each project, we clone the latest master branch version, manually
configure the extended PIT [26] via their build configuration file,
and discard the projects accused by PIT of having failing tests. The
five remaining projects are highly active and their size ranges from
35.9KLOC (Retrofit) to 310.8KLOC (RxJava).

4.2 Running the Mutation Testing Tool

After selecting the target projects, we start the mutation testing
execution phase. Table 1 summarizes this analysis: in total, PIT
detected 18,321 test cases in the five projects. Overall, it generated
55,427 mutants, which resulted in 16,149,383 mutant executions.
The mutation scores are overall high, ranging from 73% (Okhttp) to
86% (Commons Lang). For comparison purposes, we also present the
coverage values in the last column. As expected [34], the coverage
values are frequently higher than the mutation score.

Table 1: Projects test quality overview.

Project Tests Mutants TM Runs Score Covw.
Commons Lang 3,668 13,517 1.243M 86% 95%
RxJava 12,145 22,342 6.368M 85% 100%
ZXing 408 11,918 1.121M 75% 94%
Retrofit 337 883 0.154M 75% 51%
Okhttp 1,763 6,767 7.261M 73% 86%

4.3 Selecting the Test Methods

The next step is to select the test methods to be analyzed. To be
selected for this study, test methods must: (1) contain a @Test anno-
tation or a name prefixed by test, (2) not rely on anonymous classes,
(3) not contain neither @Ignore nor @Disabled annotations, and (4)
have a mutation score computable by PIT, i.e., it covers at least one
mutant. Next, we collect the mutation score of the test methods

https://github.com/victorgveloso/Detailed-CSV-Report-PITest

Characterizing High-Quality Test Methods:
A First Empirical Study

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

class SUT { + N
- SUT T ™) Covered Obtained
] (/N —> /N | Method Name Score Assertion Mutants Result
public int sum(int x, int y) { X Yy X Yy ! lled
return x_+ y; testSum1 100% assertEquals(sum(4,5),9) ° 5 k:IIZd
(¢3) ST et MU S 100% assertEquals(sum(6,-5),1) o no e
public String triangle(int a, int b, int c) { | | testSum3 100% Equals(sum(-2,-4).-6) 2 Killed
ST (Caile = Gl (2)/+\ > 0 estSum3 i assertEquals(sum(-2,-4),-6, P o il
if (a==Db & b ==c) { X]] 3) “Eq” killed
rd3Ilt = "Eq"; // Equilateral y testTrianglel 100% assertEquals(triangle(1,2,2) “Is”) it i
ilse T T testTriangle2 ~ 50% assertEquals(triangle(1.2,3),°Sc”) sz S sunived
) result = "Sc"; // Scalene 3)?= }:\b testTriangle3 100% assertEquals(triangle(1,1,1),“Eq”) Ef)w nI:ll Eﬂzg
> triangle =
else { a a testTriangled 507 assertNotEquals(triangle(1,2,2),“Eq”) S’y nhuc{l S:‘r‘\l}f‘id
result = "Is"; // Isosceles - 3 o 3) S survived
} testTriangle5 0% assertNotEquals(triangle(1.2.3).‘Eq”) N
return result; R . - 3 Is” ived
} Z Math Mutator return return estTriangles 0% assertNotBquals(triangle(L,L,1),5c”)) e sunived
— Return Values Mutator (4) | — -
} — Negate conditionals Mutator || result ~ > null Test Suite Mutation Score: 100%

Figure 2: Score computation example in mutation testing inspired by [34] (“TM”: Test Method).

individually, extract the top-100 methods and bottom-100 methods
in terms of mutation score, and randomly select 100 methods.

4.4 Assessing the Research Questions

4.4.1 RQT (Quality). In the first RQ, we investigate high and low-
quality test methods’ code and evolution by computing six metrics:
three evolutionary metrics (from PyDriller [29]) and three test-
related (from “tsDetect” [25]). Those are largely adopted tools in
the testing and software mining literature [4, 15, 17, 23, 31].

Test Size. We assess the size of the test methods in terms of source
lines of code (SLOC). Big test methods are heavy and hard to read [25].
Test Quality. We assess three metrics specific to test methods [25].
Number of exceptions measures the amount of exception-related
code structures. We compute the number of bad asserts (i.e., asserts
without an explanation) present in test methods [31]. Lastly, magic
numbers are direct references to numbers in the tests.
Contributors. We assess developers’ expertise as the ratio of com-
mits they authored in the target project and number of contributors
is how many distinct developers changed each test method.
Modifications. Evolution is an important aspect of any source
code and tests are not different. We analyze the number of changes
(commits) in the test methods to understand their stability.
Rationale. Assessing to what extent high and low-quality test meth-
ods are associated with code evolution and static metrics is relevant
for both practitioners and researchers. Practitioners may consider
using static metrics which are cheaper in terms of space and time
as a proxy of test quality. On the research side, this may support
the prediction of test method quality [35] based on both metrics.

4.4.2 RQ2 (Test Smells). This RQ assesses the impact of test smells
(i.e., sub-optimal design choices made when developing tests [20])
on test methods in terms of mutation score. Like RQ1, we rely on
“tsDetect” [25] and analyze the latest version of the repositories’
master branch. We assess ten test smells [25, 33]: Assertion Roulette,
Duplicate Assert, Conditional Test Logic, Dependent Test, Sleepy
Tests, Sensitive Equality, General Fixture, Magic Number Test, Ex-
ception Catching Throwing, and Unknown Tests. We select the top
10 most consolidated test smells and discard the ones: unrelated
to test methods (e.g., Constructor Initialization), debatable in the

literature (e.g., Mystery Guest), and infrequent in our dataset (e.g.,
Default Test).

Rationale. Recent studies focus on test smells [24], their impact on
defect and change-proneness [30], and co-occurrence with code
smells [32]. Still, their relationship with mutation score is unclear.

5 RESULTS
5.1 RQ1 (Quality)

Table 2 summarizes the metric values for the the best (top-100),
random (100-random), and worst (bottom-100) methods. We apply
the Mann-Whitney test at alpha value = 0.05 and the Cohen’s d
effect size between the best and worst test methods (column “Best vs.
Worst”). We find a statistically significant difference in all metrics,
with at least a very small effect. Next, we highlight some differences.
Number of lines of code. The best test methods are only slightly
smaller than the worst ones (9 vs. 10, very small effect size).
Number of bad asserts. As most asserts are written without any
explanation, this metric can be seen as a proxy of “number of
asserts”. High-quality test methods have, on average, more asserts
(3.7) than low-quality ones (1.6), but the difference is only small.
Number of modifications. The best test methods are only slightly
less modified than the worst ones (mean 3.3 vs. 3.9, small effect).

Table 2: Metrics overview (7: median; Rnd: Random; N: Neg-
ligible; VS: Very Small; S: Small; H: Huge).

. Best | Rnd | Worst Best vs. Worst
Metric _ _ _ .
[l 7] [l p-value effect-size

N2 of lines of code 10 ‘ 10 ‘ 9 ‘ < 0.05 'S
N¢ of bad asserts 2 1 1 < 0.05 S
N® of exceptions 0 0 0 < 0.05 S
N2 of magic numbers 0 0 0 < 0.05 'S
N¢ of contributors 2 2 2 < 0.05 'S
N® of modifications 3 3 3 < 0.05 S
Developer expertise 0.1 0.1 0.2 < 0.05 VS
Score 09 |06 | 0 | <0.05 H

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

5.2 RQ2 (Test Smells)

Figure 3 compares the presence of test smells on both high and low-
quality test methods. Sleepy Tests, often related to non-determinism
and flaky tests [10, 22], only occurs in the worst group. Next, we
see that 76% of General Fixture cases affect low-quality test meth-
ods. Moreover, 68% of Unknown Test happen in low-quality test
methods. Finally, Conditional Test Logic and Exception Catching
Throwing are also more likely to happen in low-quality test meth-
ods, however, the difference is smaller (58% vs. 42% and 54% vs.
46%, respectively). On the other hand, we see some test smells oc-
curring more often in the best test methods, e.g., Magic Number
Test, Assertion Roulette, and Duplicate Assert. Those test smells are
very controversial, for instance, Assertion Roulette represents test
methods with more than one assert without explanation/message,
which is a common practice in software testing. Indeed, those test
smells are more related to test readability and do not directly affect
the ability of the test to catch bugs.

Sleepy Test 100
General Fixture 7624
Unknown Test 68 32
Conditional Test Logic 58 42
Exception Catching Throwing 54 46
Dependent Test 47 53
Duplicate Assert 40 60
Assertion Roulette 38 62
Magic Number Test 3862
Sensitive Equality 3565 g ﬁst
rst

0 25 50 75 100
Percentage (%)

Figure 3: Prevalence of test smells.

6 DISCUSSION

Code and evolutionary characteristics. It is conventional wis-
dom that test methods should be small and non-complex to improve
their maintainability [19]. However, we lack empirical data showing
the real benefits of having those factors. We find no major differ-
ences between high-quality and low-quality test methods in terms
of size, number of asserts, and modifications. This opens room for
novel research to better understand the differences between high
and low-quality test methods.

Test smells. Recent studies show that test smells may decrease the
understandability and maintainability of the test suites [1, 2, 30, 32],
despite practitioners do not perceive test smells as actual prob-
lems [24, 32]. In this study, we find that low-quality test methods
are more likely to include critical test smells. For example, low-
quality test methods are over-concentrated on Sleepy Test, General
Fixture, and Unknown Test. On the other hand, high-quality test
methods have less critical test smells, which are related to test
readability, like Magic Number Test and Assertion Roulette. Thus,
practitioners in charge of maintaining test suites should be aware
that the presence of some test smells is associated with the test
suite’s ability in catching real bugs.

Veloso and Hora

7 THREATS TO VALIDITY

Timed out tests. PIT implements heuristics to identify mutants
suffering from infinite loops. We discarded time-out occurrences
from the test method score’s formula to prevent noise in the score.
Failing test suite. Mutations to static members [16] and tests
depending on a specific execution order may be falsely accused
of having a non-green test suite. Solved by forcing PIT to execute
mutants in separate processes and discarding the failing projects.
Anonymous classes. We discard test methods using anonymous
classes, due to “tsDetect” tool [25] incompatibility.
Generalization. We analyzed thousands of test methods provided
by open-source Java projects. However, our findings may not be
directly generalized to other systems, as commercial ones with
closed source and implemented in other languages.

8 RELATED WORK

Measuring test effectiveness through Mutation Testing is a largely
studied topic with well-defined benefits and constraints [14]. Ad-
dressing those points, Jia et al. [14] summarize 390 studies in a
public repository. On the other hand, Giovanni et al. [11] found
that researchers and practitioners perceive existing metrics assist
detecting low-quality test suites, but do not guarantee the high
quality of a test suite. [11]. Catolino et al. [4] find assertion density
correlation with developer’s experience and class-related factors.

Test smells are associated with several factors in software de-
velopment, for example, code smells [32], change-proneness and
defect-proneness [30], and post-release defects [24]. Despite the
richness of the test smell research topic, practitioners do not per-
ceive test smells as actual problems [24, 32], 90% of test smells are
never fixed, and fixing takes, on average, 100 days [32].

Hilton et al. assess the impact of finer granularity reports on
some test coverage limitations. The authors describe how non-code
changes impact test coverage and how finer granularity reports
enable developers to better understand the quality of a specific
change [12]. Despite being considerably cheaper than mutation
testing, test coverage still has challenges when adopted in large-
scale projects [18]. Challenges aggravated by the monorepo settings
at Facebook, where test prioritization usage reduced infrastructure
overhead [18].

9 CONCLUSION

We proposed an empirical study to assess the quality of test meth-
ods by relying on mutation testing at the method level. We show
empirical evidence that there are no major differences between
high-quality and low-quality test methods in terms of size, number
of asserts, and modifications. Low-quality test methods are over-
concentrated on critical test smells, while high-quality test methods
are likely to contain less important ones.

As future work, we plan to extend our dataset and to include
more static and runtime metrics in the analysis to better assess test
quality, e.g., metrics related to the adopted assertions and the input
data. Lastly, we plan to provide more qualitative analysis on the
differences between high and low-quality test methods.

ACKNOWLEDGMENT
This research is supported by CAPES, CNPq, and FAPEMIG.

Characterizing High-Quality Test Methods:

A First Empirical Study MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David [29

Systems and Software 146 (2018), 112-129.
Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

A

[12

[13]

[14

[15]

(18]

[19

[20]

[21

[22]

[23

[24

[25]

[26]
[27

[28]

Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In International Conference on Software
Maintenance. 56-65.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (2015), 1052-1094.

Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors that Impact the Popularity of GitHub Repositories. In International
Conference on Software Maintenance and Evolution. 334-344.

Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
How the experience of development teams relates to assertion density of test
classes. In International Conference on Software Maintenance and Evolution. 223—
234.

Code Coverage Best Practices. November, 2020.
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html.
Codecov. November, 2020. https://codecov.io.

Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. Pit: a practical mutation testing tool for java. In Interna-
tional Symposium on Software Testing and Analysis. 449-452.

Coverage.py. November, 2020. https://coverage.readthedocs.io.

Coveralls. November, 2020. https://coveralls.io.

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding Flaky Tests: The Developer’s Perspective. In Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 830-840.

Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Harald C. Gall. 2020. Pizza
versus Pinsa: On the Perception and Measurability of Unit Test Code Quality. In
International Conference on Software Maintenance and Evolution. 336—347.
Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A large-scale study
of test coverage evolution. In International Conference on Automated Software
Engineering. 53-63.

Marko Ivankovi¢, Goran Petrovi¢, René Just, and Gordon Fraser. 2019. Code
coverage at Google. In Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 955-963.

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. Transactions on Software Engineering (2011), 649-678.

Ayaan M Kazerouni, Clifford A Shaffer, Stephen H Edwards, and Francisco Ser-
vant. 2019. Assessing incremental testing practices and their impact on project
outcomes. In Technical Symposium on Computer Science Education. 407-413.
Thomas Laurent and Anthony Ventresque. 2019. PIT-HOM: an Extension of
Pitest for Higher Order Mutation Analysis. In International Conference on Software
Testing, Verification and Validation Workshops. 83-89.

Valentina Lenarduzzi, Nyyti Saariméki, and Davide Taibi. 2019. The technical
debt dataset. In International Conference on Predictive Models and Data Analytics
in Software Engineering. 2-11.

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In International Conference on Software Engineering:
Software Engineering in Practice. 91-100.

Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. 2016. Will My Tests
Tell Me If I Break This Code?. In International Workshop on Continuous Software
Evolution and Delivery. 23-29.

Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells in-
duce fixing flaky tests?. In International Conference on Software Maintenance and
Evolution. 1-12.

A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J. Hellendoorn. 2020.
Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and
Opportunities. In International Conference on Software Maintenance and Evolution.
523-533.

Fabiano Pecorelli, Fabio Palomba, and Andrea De Lucia. 2021. The Relation
of Test-Related Factors to Software Quality: A Case Study on Apache Systems.
Empirical Software Engineering 26, 2 (2021), 1-42.

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. TsDetect: An Open Source Test
Smells Detection Tool. In Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. 1650-1654.
PIT Mutation Testing. November, 2020. https://pitest.org.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-Offs in Test-Suite Reduction. In Foundations of Software
Engineering. 246-256.

Hudson Silva and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of

framework for mining software repositories. In Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering. 908-911.

D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On the
Relation of Test Smells to Software Code Quality. In International Conference on
Software Maintenance and Evolution. 1-12.

Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink,
and Alberto Bacchelli. 2020. Investigating Severity Thresholds for Test Smells. In
International Conference on Mining Software Repositories. 311-321.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An Empirical Investi-
gation into the Nature of Test Smells. In International Conference on Automated
Software Engineering. 4-15.

Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2001). 92-95.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon Fraser, and Christian
Holler. 2019. The Fuzzing Book. Saarland University. https://www.fuzzingbook.
org

[35] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang. 2019. Predictive

Mutation Testing. Transactions on Software Engineering 45 (2019), 898-918.

https://www.fuzzingbook.org
https://www.fuzzingbook.org

	Abstract
	1 Introduction
	2 Mutation Testing In a Nutshell
	2.1 Mutation Score Computation
	2.2 Limitation of Test Suite Mutation Testing

	3 Mutation Testing at Method Level
	3.1 Test Method Mutation
	3.2 Example: Computing Test Method Scores

	4 Study Design
	4.1 Selecting the Software Systems
	4.2 Running the Mutation Testing Tool
	4.3 Selecting the Test Methods
	4.4 Assessing the Research Questions

	5 Results
	5.1 RQ1 (Quality)
	5.2 RQ2 (Test Smells)

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

