
Towards a Catalog of Refactorings for Elixir
Lucas Francisco da Matta Vegi
Department of Computer Science

Federal University of Minas Gerais (UFMG)
Belo Horizonte, Brazil
lucasvegi@dcc.ufmg.br

Marco Tulio Valente
Department of Computer Science

Federal University of Minas Gerais (UFMG)
Belo Horizonte, Brazil

mtov@dcc.ufmg.br

Abstract—Elixir is an emerging functional programming lan-
guage that is gaining popularity in the industry. However, to the
best of our knowledge, no study has yet presented a specialized
catalog of refactoring strategies specifically tailored for this
language. Therefore, this paper aims to address this research
gap by conducting a systematic literature review to explore
whether there are existing refactoring strategies, compatible with
Elixir, that have been proposed for other functional languages
or languages that served as inspiration for the development
of Elixir. Our preliminary results indicate that there are 54
refactoring strategies compatible with Elixir code, thus form-
ing a comprehensive catalog of refactoring techniques tailored
specifically for this language. To illustrate the application of these
refactoring strategies, we have provided code examples that show
the transformations resulting from each refactoring. Additionally,
these refactorings have been categorized into three distinct groups
based on the specific programming features required for the
respective code transformations.

Index Terms—refactoring, Elixir, functional programming

I. INTRODUCTION

Elixir is a modern functional programming language
renowned for its efficient performance in parallel and dis-
tributed computing environments [1]. Conceived in 2012,
Elixir draws inspiration from a blend of various programming
languages. The language adopts a Ruby-based syntax, which
contributes to its user-friendly nature. Similar to Haskell,
Elixir employs immutable data structures, rendering it suitable
for concurrent programming. Although they possess different
syntaxes and features, Elixir integrates with Erlang, enabling
interoperability between the two languages as they both run
on BEAM, Erlang’s virtual machine [2]. Moreover, Elixir
incorporates polymorphic and extensible features inherited
from Clojure. As a result, the adoption of Elixir is gaining
traction, with over 300 companies worldwide using the lan-
guage, including Discord, Heroku, and PepsiCo.1

Just as in any programming language, it is natural to
expect Elixir developers to seek design improvements in
their codebase through refactoring strategies, which are code
transformations that do not alter behavior [3]. The term was
first proposed by Opdyke [4] and popularized by Fowler in
his well-known catalog containing 72 refactorings for object-
oriented code [3].

According to Bordignon and Silva [5], an increasing number
of developers are using functional languages in the industry.

1https://elixir-companies.com/en

Conversely, Abid et al. [6] have shown the scarcity of studies
conducted on refactoring for these languages. Furthermore,
to the best of our knowledge, no study has yet investigated
refactorings specifically tailored for Elixir.

To address this research gap, the present paper provides pre-
liminary documentation on refactorings compatible with Elixir
that have been proposed for other functional languages or
languages that served as inspiration for the creation of Elixir,
such as Ruby. The final goal of our research is to propose a
specific catalog of refactorings for Elixir. To achieve this goal
and considering that refactoring for functional languages has
been previously discussed in the literature [7], [8], we opted
to conduct a Systematic Literature Review (SLR) to identify
such refactoring strategies.

The refactorings that were identified in our SLR study were
analyzed and adapted for Elixir when compatible. While not
all adaptations are straightforward, we deliberately chose a
simple example to illustrate this process. In Erlang, there
are several built-in higher-order functions for working with
lists (e.g., lists:map/2, lists:foreach/2, and lists:filter/2). In
Elixir’s Enum module there are functions equivalent to those
in Erlang. However, sometimes it is recommended to replace
calls of such functions by list comprehensions. Thus, it is
possible to adapt to Elixir the refactoring TRANSFORM TO
LIST COMPREHENSION, originally proposed by Sagonas and
Avgerinos [9] for Erlang:

1 # Before refactoring
2 def square(list) do
3 Enum.map(list, &(&1 * &1))
4 end
5
6 # After refactoring
7 def square(list) do
8 for x <- list, do: x * x
9 end

The adaptation for Elixir only involves syntactic changes.
In the example, line 3 is equivalent to lists:map(fun(x) -> x

* x end, list) in Erlang, and the list comprehension in line
8 is equivalent to [x * x || x <- list]. Although simple, this
refactoring results in code that is more declarative and easier
to read [10].

As part of our research effort, we also provide code exam-
ples in Elixir for all refactorings compatible with the language.
Besides, as the side conditions that need to be validated
to apply a refactoring depend on the characteristics of each

https://elixir-companies.com/en

language [11], our catalog includes tailored documentation of
side conditions for Elixir.

Our contributions are twofold: (1) we cataloged 54 refactor-
ings that are compatible with Elixir code, categorizing them
into three distinct groups (traditional refactorings, functional
refactorings, and Erlang-specific refactorings); and (2) we
provided documentation with code examples and tailored side
conditions that can support the implementation of automated
refactoring tools for Elixir in the future. Indeed, no robust,
up-to-date, and widely adopted refactoring tool is available
for Elixir, as shown by an exploratory search conducted by us
on Hex,2 Elixir’s package manager.

The remainder of this paper is organized as follows. Our
research question and methods are presented in Section II.
In Section III, we present and discuss our preliminary results.
Potential threats to validity are listed in Section IV. In addition,
we present related work in Section V. Finally, we conclude the
paper and present suggestions for future work in Section VI.

II. METHODOLOGY

Due to Elixir being a relatively recent programming lan-
guage, there is a limited number of studies that explore
software engineering and quality attributes of Elixir-based
software. Specifically, to the best of our knowledge, no work
investigates or catalogs specific refactoring strategies for this
language. Therefore, aiming to provide a preliminary catalog
of refactoring for Elixir, we initially decided to conduct a
Systematic Literature Review (SLR) to answer the following
research question:

• RQ: What are the refactorings reported in the related
literature that apply to Elixir?

Our definition of related literature pertains to papers dis-
cussing functional languages or other programming languages
that have influenced the development of Elixir, such as Ruby.

We based on guidelines for conducting SLR studies in soft-
ware engineering [12]–[14] to identify, examine, and evaluate
scientific papers related to refactoring in functional program-
ming languages. Figure 1 summarizes the steps we followed
in our SLR. Next, we also detail these steps.

Fig. 1. Overview of our methodology.

1) Papers Search: Our objective was to search for articles on
refactoring in well-known functional programming languages

2https://hex.pm/

or in languages that inspired the creation of Elixir. To build a
query string compatible with this objective, we followed five
steps proposed by Kitchenham and Charters [14] to find all
relevant search terms for a query string:

• We extracted the main terms using our RQ as a basis;
• We added variations and synonyms of the main terms;
• We conducted preliminary searches in order to refine

the query string, aiming to obtain comprehensive and
accurate results;

• We used "OR" operators to concatenate variations of
related terms. Additionally, the "AND" operator was used
to combine the main terms;

• We adapted the query string to formats compatible with
the limitations of the digital libraries used.

After these steps, we define the following query string:

1 ("Refactoring") AND ("Functional Language" OR "Functional
Paradigm" OR "Elixir" OR "Erlang" OR "Haskell" OR "
Clojure" OR "Ruby" OR "Lisp")

As Elixir is a compilation of features from various other
languages such as Erlang, Haskell, Clojure, and Ruby [1], we
added these terms concatenated in our query string. Lisp was
included due to its historical importance and popularity, as in
addition to being the first functional language created [27], it
is also widely known and used.3

In order to carry out the search, we opted for four reputable
digital libraries that index software engineering publications
relevant to our research question: IEEE Xplore digital library,4

ACM digital library,5 ScienceDirect,6 and Scopus.7 The final
search was conducted in February 2023, when these terms
were searched in the abstracts of the papers retrieved from
these digital libraries.

2) Papers Selection: A total of 124 papers were found, which
we refer to as P1 to P124. The abstracts of all papers were
read by the first author, who is an expert Elixir developer,
to select only those related to our research question. In
addition, 37 duplicates were eliminated as these papers were
returned by more than one digital library. After this step, 51
papers were selected. Our replication package includes the
complete compilation of papers, also encompassing those that
are duplicated or not-related to our research question.

3) Snowballing: In order to add new studies to our knowledge
base, we used a snowballing process based on the recommen-
dations made by Wohlin [15]. The first author analyzed the
papers referenced by the 51 papers selected in the previous
step and selected those that are relevant for our research
question. Later, the abstracts of these papers were read, and
14 of them, which we refer to as P125 to P138, were also
selected for further analysis.

3https://www.tiobe.com/tiobe-index/
4http://ieeexplore.ieee.org
5https://dl.acm.org
6http://www.sciencedirect.com
7https://www.scopus.com

https://hex.pm/
https://www.tiobe.com/tiobe-index/
http://ieeexplore.ieee.org
https://dl.acm.org
http://www.sciencedirect.com
https://www.scopus.com

4) Data Extraction and Validation: The 65 papers selected
in the previous steps were fully read and analyzed by the
first author, aiming to extract refactoring candidate strategies
that also apply to Elixir. These refactoring candidates were
validated by the second author. Only eight out of 65 papers
did not have refactoring candidates extracted. In total, 77
refactoring candidates were extracted by the first author and
validated by the second one.

5) Mapping to Elixir: Finally, all 77 refactoring candidates
were analyzed by the first author to identify those compatible
with Elixir’s features and then adapt them to the language’s
syntax and semantics. Due to language feature incompatibili-
ties, 23 out of 77 refactoring candidates were not selected to
compose our catalog of refactoring for Elixir. Some of these
refactorings involve, for example, Haskell’s static data typing
system, which cannot be reproduced in Elixir.

A total of 54 of these candidates had their compatibility
with Elixir confirmed, thus code examples that illustrate the
transformations were created for the catalog. Besides, we
provide tailored documentation of side conditions of each
refactoring in Elixir. These refactorings were also categorized
into three groups: Traditional, which are mainly based on
Fowler’s catalog [3]; Functional, which use programming
characteristics of functional languages, such as pattern match-
ing and higher-order functions; and Erlang-Specific, which use
features unique to the Erlang ecosystem (e.g., OTP, typespecs,
and behaviours).

III. RESULTS

In our systematic literature review, we found 54 refactorings
compatible with Elixir, with 21 of them categorized as Tradi-
tional refactorings (see Table I), 23 as Functional refactorings
(see Table II), and 10 as Erlang-specific refactorings (see
Table III). Due to space limitations, we present in these tables
only the refactorings that were cited in at least two different
papers. For this reason, 12 refactoring strategies found in a
single paper are not presented in the tables. However, in our
replication package, all 54 refactorings are listed.

According to Murphy-Hill et al. [16] and Golubev et
al. [17], RENAMING AN IDENTIFIER is the most frequently
performed refactoring by developers. As shown in Table I,
this fact can also be observed in our study, as RENAMING
AN IDENTIFIER was not only the most common Traditional
refactoring but also the most common refactoring among all
54 in our catalog, cited in 35 papers. In Elixir, code identifiers
can be functions, modules, macros, variables, map/struct fields,
modules aliases, and modules attributes. When the name of an
identifier does not clearly convey its purpose, it should be
renamed to improve readability.

As shown in Table II, the most extracted refactoring from
the Functional refactorings category in our study was GENER-
ALISE A FUNCTION DEFINITION. In total, 22 papers cited this
refactoring in the context of Erlang or Haskell. It proposes
using higher-order functions to eliminate duplicated code
among functions, as shown in the following example:

TABLE I
TRADITIONAL REFACTORINGS

Refactoring Description #
Rename an identifier Renames identifiers (e.g., functions, modules,

macros, etc.) to clearly convey their purpose
35

Extract function Creates a new function by extracting code
snippets from existing functions

26

Folding against a
function definition

Replaces duplicated code with a call to an
existing equivalent function

21

Moving a definition Moves a definition (e.g., function or struct)
from one module to another

16

Add or remove a pa-
rameter

Used when it is necessary additional infor-
mation from the callers of a function or the
opposite situation

14

Introduce or remove
a duplicate definition

Temporarily duplicates an identifier to test
a change on it without losing the original

11

Inline function Replaces all calls to a function with its body 10
Grouping parameters
in tuple

Groups some of a function’s parameters into
a tuple (a.k.a. Introduce Parameter Object)

10

Reorder parameter Improves the readability of a function’s in-
terface by reordering its parameter list

10

Remove dead code Removes definitions that are not being used 9
Remove import at-
tributes

Removes import directives by replacing all
calls to imported functions with fully-
qualified calls

8

Merge expressions Breaks large expressions into smaller parts
and assign them to local variables

6

Simplifying
nested conditional
statements

Eliminates unnecessary nested conditional
statements

5

Introduce import Replaces fully-qualified function calls with
calls that use only the name of the imported
functions

4

Splitting a large
module

Splits a module into several new ones, mov-
ing to each new module the attributes and
functions with related purposes

4

Introduce overload-
ing

Creates variations of a function using the
same name

2

Temporary variable
elimination

Eliminates variables that only store results
to return or intermediate values

2

#: The number of papers citing the refactoring.

1 # Before refactoring
2 def foo(list) do
3 list_comprehension = for x <- list, do: x * x
4 Enum.map(list_comprehension, &(&1 * 3))
5 end
6
7 def bar(list) do
8 list_comprehension = for x <- list, do: x + x
9 Enum.filter(list_comprehension, &(rem(&1, 4) == 0))

10 end
11
12 # After refactoring
13 def gen(list, gen_op, trans_op, trans_args) do
14 list_comprehension = for x <- list, do: gen_op.(x,x)
15 trans_op.(list_comprehension, trans_args)
16 end
17
18 def foo(list) do
19 gen(list, &Kernel.*/2, &Enum.map/2, &(&1 * 3))
20 end
21
22 def bar(list) do
23 gen(list, &Kernel.+/2, &Enum.filter/2, &(rem(&1,4) == 0))
24 end

Before GENERALISE A FUNCTION DEFINITION, we have
two similar functions. The foo/1 takes a list and transforms it
into two steps. First, it squares each of its elements (line 3)

and then multiplies each element by three (line 4), returning a
new list. Similarly, bar/1 receives a list, doubles the value of
each element (line 8), and then returns a new list containing
only the elements divisible by four (line 9).

Although foo/1 and bar/1 transform lists in different ways,
they have duplicated structures. This refactoring generalizes
these functions by introducing a new function gen/4 (line 13).
Thus, the bodies of foo/1 and bar/1 are replaced with calls
to gen/4 (lines 19 and 23). Note that gen/4 is a higher-order
function as its last three parameters are also functions.

TABLE II
FUNCTIONAL REFACTORINGS

Refactoring Description #
Generalise a func-
tion definition

When different functions have equivalent
expressions, these expressions can be gen-
eralized into a new higher-order function

22

Turning anonymous
into local functions

Transforms duplicated anonymous function
(lambda) into a new named function

9

From tuple to struct Transforms tuples into structs, thus provid-
ing a more abstract interface for the data and
improving code readability

7

Introduce
Enum.map/2

Replaces a list expression in which each
element is generated by calling the same
function with a call to Enum.map/2

6

Merging multiple
definitions

Functions that have common code are
merged into a new function that performs
the processing done by the original ones

6

Splitting a definition This refactoring is the inverse of MERGING
MULTIPLE DEFINITIONS

5

Nested list functions
to comprehension

Transforms nested calls of Enum.map/2 and
Enum.filter/2 into a list comprehension
(a.k.a. deforestation)

4

Struct field access
elimination

Replaces direct access to fields of a struct
with the use of temporary variables and
pattern matching

4

Widen or narrow
definition scope

Modifies the scope of functions defined in a
nested way

4

Eliminate single
branch

Eliminates control statements that have only
one possible flow

3

Inline macro substi-
tution

Replaces instances of an unnecessary macro
with its body

3

Introduce pattern
matching over a
parameter

Uses pattern matching and multi-clause
functions to replace conditional statements
(i.e., if, unless, cond, and case)

3

Transform to list
comprehension

Transforms calls to Enum.map/2 and
Enum.filter/2 into list comprehensions

3

Equality guard to
pattern matching

Replaces a variable extracted from a struct
field, that is only used in a guard equality
comparison, with pattern matching

2

Function clauses
to/from case clauses

Transforms a multi-clause into a single-
clause function, mapping function clauses
into clauses of a case statement

2

List comprehension
simplifications

Inverse of TRANSFORM TO LIST COMPRE-
HENSION and NESTED LIST FUNCTIONS TO
COMPREHENSION

2

Static structure reuse Eliminates recreations of identical tuples or
lists by assigning them to variables

2

Struct guard to
matching

Transforms a guard that unnecessarily use
is_struct/1 or is_struct/2 call, into explicit
pattern matching

2

Transform a body-
recursive function to
a tail-recursive

Converts a body-recursive function into a
tail-recursive one to improve performance

2

Transforming
list appends and
subtracts

Transforms calls to the Enum.concat/2 and
Enum.reject/2 into uses of the Kernel.++/2 and
Kernel.-/2 operators

2

#: The number of papers citing the refactoring.

Since the scope of the Erlang-specific refactorings is nar-
rower, this category had a smaller number of extractions
compared to the others. As shown in Table III, the most
extracted refactorings from this category were ADD TYPE
DECLARATIONS AND CONTRACTS and INTRODUCE/REMOVE
CONCURRENCY, both found in four papers. These refactorings
respectively make use of the features typespecs and GenServer

from the Erlang ecosystem.

TABLE III
ERLANG-SPECIFIC REFACTORINGS

Refactoring Description #
Add type declara-
tions and contracts

Uses typespecs to create Elixir’s custom
types, thereby naming recurring data

4

Introduce/remove
concurrency

Uses concurrent processes (e.g., GenServer)
to achieve a more optimal mapping between
Elixir’s processes and parallel activities

4

From defensive to
non-defensive pro-
gramming style

Transforms defensive-style error handling
code into Elixir’s supervised processes (a.k.a.
“let it crash style”)

3

From meta to nor-
mal function appli-
cation

Replaces calls to apply/3 with calls to func-
tions that have modules, names, and param-
eter lists defined at compile time

3

Generate function
specification

Uses typespecs to specify the types of param-
eters and of the return value of a function

2

#: The number of papers citing the refactoring.

Similar to Fowler’s catalog [3], our catalog of refactorings
for Elixir can aid developers in improving existing code design
in this language, offsetting the degradation experienced by
software over time. Future research can explore real Elixir
systems to expand this catalog and quantify the prevalence of
these refactorings. Additionally, investigations into removing
code smells [25], [26] in Elixir systems can be guided by our
catalog of refactorings. Finally, automated tools for executing
our refactoring strategies can be proposed.

RQ answer: In total, 54 refactorings reported in the
literature for other functional languages and/or languages
that served as inspiration for the creation of Elixir,
are compatible with this language. More details about
each of these refactorings, including code examples and
tailored side conditions, are available at https://github.
com/lucasvegi/Elixir-Refactorings

IV. THREATS TO VALIDITY

Since we chose to retrieve papers only in digital libraries
that support searching for query string terms exclusively in
the abstracts of publications, SpringerLink8 was not utilized
by us. Therefore, there is a risk that important works may not
have been retrieved in our review. To mitigate this threat to
external validity, we incorporated a snowballing step into our
methods, enabling the retrieval of relevant papers published in
a broader range of venues.

The threat to internal validity relates to factors that could
introduce biases into our results. To mitigate this, all steps of

8https://link.springer.com

https://github.com/lucasvegi/Elixir-Refactorings
https://github.com/lucasvegi/Elixir-Refactorings
https://link.springer.com

paper selection, data extraction, and mapping to Elixir were
independently validated by the second author, thus minimizing
individual perception biases.

Finally, the main threat to construct validity concerns the
format of the query string. In a systematic literature review,
there is a risk that important results may be overlooked due
to the omission of specific combinations of terms in the query
string. To mitigate this threat, we followed five steps proposed
by Kitchenham and Charters [14] to define relevant search
terms for the query string.

V. RELATED WORK

To the best of our knowledge, this is the first work that cat-
alogs refactorings for Elixir. However, there are other studies
that present refactorings and tools for functional languages.

Li et al. [18]–[20] present an automatic refactoring tool for
Erlang called Wrangler. To illustrate the use of this tool, some
refactoring strategies for this language are presented. Similarly,
Sagonas and Avgerinos [9] and Lövei et al. [21] respectively
propose the tools Tidier and RefactorErl, accompanied by
refactoring strategies for Erlang. In addition to Erlang, Haskell
is also the subject of studies on refactoring. Brown et al. [22]
briefly describe a number of refactorings implemented in
the Haskell refactorer, HaRe. These refactoring strategies for
Haskell and Erlang were compared by Li and Thompson [11],
showing that each language has its own constraints and chal-
lenges, which therefore justifies the proposition of language-
specific refactoring catalogs.

Other SLR studies have examined various areas related
to refactoring [6], [23], [24], but none of them specifically
focused on functional languages like our work.

VI. CONCLUSION AND FUTURE WORK

This paper reported a systematic literature review to extract,
adapt, and document 54 refactorings that are compatible with
Elixir, thereby proposing a first catalog specifically tailored
for this language.

As future work, we intend to expand our catalog through
a grey literature review and by mining software repositories
on GitHub. Additionally, we plan to identify Elixir-specific
refactorings by analyzing the catalog of code smells specific
to Elixir also proposed by us [25], [26]. This analysis can help
us to discover refactoring strategies for eliminating these code
smells that are not yet covered in our present study. Next,
we also plan to conduct surveys and interviews with Elixir
developers to validate our catalog of refactorings. Finally, we
plan to dedicate efforts towards the development of a tool that
can automatically refactor Elixir code.
Replication Package. We provide the complete dataset used
in this paper at https://doi.org/10.5281/zenodo.7999830.
Acknowledgment. This research is supported by a grant from
Finbits: http://www.finbits.com.br.

REFERENCES

[1] S. Juric, Elixir in action, 2nd ed., Manning, 2019.
[2] D. Thomas, Programming Elixir |> 1.6: functional |> concurrent |>

pragmatic |> fun, 1st ed., Pragmatic Bookshelf, 2018.

[3] M. Fowler and K. Beck, Refactoring: improving the design of existing
code, 1st ed., Addison-Wesley, 1999.

[4] W. F. Opdyke, “Refactoring object-oriented frameworks,” PhD thesis.
University of Illinois at Urbana-Champaign, USA, 1992.

[5] M. D. Bordignon and R. A. Silva, “Mutation operators for concurrent
programs in Elixir,” in IEEE Latin-American Test Symposium (LATS),
pp. 1-6, 2020.

[6] C. Abid, V. Alizadeh, M. Kessentini, T. N. Ferreira, and D. Dig, “30
years of software refactoring research: a systematic literature review,”
ArXiv, vol. abs/2007.02194, pp. 1-23, 2020.

[7] H. Partsch and R. Steinbruggen, “Program transformation systems,”
ACM Computing Surveys, vol. 15, no. 3, pp. 199-236, 1983.

[8] P. Hudak, “Conception, evolution, and application of functional pro-
gramming languages,” ACM Computing Survey, vol. 21, no. 3, pp. 359-
411, 1989.

[9] K. Sagonas and T. Avgerinos, “Automatic refactoring of Erlang pro-
grams,” in 11th ACM SIGPLAN conference on principles and practice
of declarative programming (PPDP), pp. 13-24, 2009.

[10] T. Avgerinos and K. Sagonas, “Cleaning up Erlang code is a dirty job but
somebody’s gotta do it,” in 8th ACM SIGPLAN workshop on Erlang,
pp. 1-10, 2009.

[11] H. Li and S. Thompson, “Comparative study of refactoring Haskell and
Erlang programs,” in 6th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM), pp. 197-206, 2006.

[12] B. Barn, S. Barat, and T. Clark, “Conducting systematic literature re-
views and systematic mapping studies,” in 10th Innovations in Software
Engineering Conference (ISEC), pp. 212-213, 2017.

[13] D. Budgen and P. Brereton, “Performing systematic literature reviews
in software engineering,” in 28th International Conference on Software
Engineering (ICSE), pp. 1051-1052, 2006.

[14] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[15] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in 18th International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE),
pp. 1-10, 2014.

[16] E. R. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and
how we know it,” IEEE Trans. Soft. Eng., vol. 38, no. 1, pp. 5-18, 2012.

[17] Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, and M. W.
Mkaouer, “One thousand and one stories: a large-scale survey of
software refactoring,” in European Soft. Eng. Conf. and Symposium
on the Foundations of Soft. Eng. (ESEC/FSE), pp. 1303-1313, 2021.

[18] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Víg, and T.
Nagy, “Refactoring erlang programs,” in 12th International Erlang/OTP
User Conference (EUC), pp. 1-10, 2006.

[19] H. Li, S. Thompson, G. Orosz, and M. Tóth, “Refactoring with wrangler,
updated: data and process refactorings, and integration with eclipse,” in
7th ACM SIGPLAN workshop on Erlang, pp. 61-72, 2008.

[20] H. Li and S. Thompson, “A domain-specific language for scripting refac-
torings in Erlang,” in Fundamental Approaches to Software Engineering
(FASE), J. Lara and A. Zisman (eds.), Lecture Notes in Computer
Science, vol. 7212, pp. 501-515, 2012.

[21] L. Lövei, C. Hoch, H. Köllö, T. Nagy, A. N. Víg, D. Horpácsi, R. Kitlei,
and R. Király, “Refactoring module structure,” in 7th ACM SIGPLAN
workshop on Erlang, pp. 83-89, 2008.

[22] C. Brown, H. Li, and S. Thompson, “An expression processor: a
case study in refactoring Haskell programs,” in Trends in Functional
Programming (TFP), R. Page, Z. Horváth, and V. Zsók (eds.), Lecture
Notes in Computer Science, vol. 6546, pp. 31-49, 2011.

[23] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: a systematic literature
review,” IEEE Trans. on Soft. Eng., vol. 44, no. 1, pp. 44-69, 2018.

[24] S. Singh and S. Kaur, “A systematic literature review: refactoring
for disclosing code smells in object-oriented software,” Ain Shams
Engineering Journal, vol. 9, no. 4, pp. 2129-2151, 2018.

[25] L. F. M. Vegi and M. T. Valente, “Understanding code smells in Elixir
functional language,” Empirical Software Engineering, vol. 28, no. 4,
pp. 1-32, 2023.

[26] L. F. M. Vegi and M. T. Valente, “Code smells in Elixir: early
results from a grey literature review,” in 30th IEEE/ACM International
Conference on Program Comprehension (ICPC), pp. 580-584, 2022.

[27] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part I,” Commun. ACM, vol. 3, no. 4, pp.
184-195, 1960.

https://doi.org/10.5281/zenodo.7999830
http://www.finbits.com.br

	Introduction
	Methodology
	Results
	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

